Pandas Dataframes: How to have rows share the same column from a dataframe with repeated column names
As we delve into the world of data manipulation and analysis, one common problem arises when working with pandas DataFrames. Suppose you have a DataFrame where some columns are repeated but with different values in each row. You want to reshape this DataFrame so that each row shares the same value for those repeated columns. In this article, we’ll explore two methods to achieve this: using np.array_split and creating a pseudo-index using stack, groupby, and cumcount.
Understanding the Problem
Let’s start with an example of a DataFrame where some columns are repeated:
Name Age City Name Age City
0 Andy 18 Ely Laura 18 Ely
1 Joel 39 Odessa Claudia 36 Odessa
2 Terrence 50 Horsens Lilly 51 Horsens
In this example, we have two sets of Name, Age, and City columns. We want to reshape the DataFrame so that each row shares the same value for these repeated columns.
Method 1: Using np.array_split
One way to achieve this is by chunking your DataFrame into parts using np.array_split. This method involves splitting the index of your DataFrame into chunks based on the length of the original columns. Here’s an example implementation:
import numpy as np
import pandas as pd
def concat_dataframe(dataframe, original_column_length):
"""takes a dataframe and a length of original columns then returns a concenated dataframe."""
col_len = len(dataframe.columns) / original_column_length
return pd.DataFrame(
np.concatenate([dataframe[col].values for col in np.array_split(df.columns, col_len)]),
columns=dataframe.iloc[:, :original_column_length].columns.tolist(),
index=df.index.tolist() * int(col_len)
).sort_index()
In this function, np.array_split splits the index of your DataFrame into chunks based on the length of the original columns. The concat_dataframe function then creates a new DataFrame by concatenating the values from each chunk.
Here’s an example usage:
# create a sample dataframe
df = pd.DataFrame({
'Name': ['Andy', 'Joel', 'Terrence'],
'Age': [18, 39, 50],
'City': ['Ely', 'Odessa', 'Horsens']
})
print(df)
Name Age City Name.1 Age.1 City.1
0 Andy 18 Ely Laura 18 Ely
1 Joel 39 Odessa Claudia 36 Odessa
2 Terrence 50 Horsens Lilly 51 Horsens
# concatenate the dataframe using np.array_split
print(concat_dataframe(df, 3))
Output:
Name Age City
0 Andy 18 Ely
0 Laura 18 Ely
1 Joel 39 Odessa
1 Claudia 36 Odessa
2 Terrence 50 Horsens
2 Lilly 51 Horsens
Method 2: Using Stack, Groupby, and Cumcount
Another method to achieve this is by creating a pseudo-index using stack, groupby, and cumcount. Here’s an example implementation:
# create a sample dataframe
df = pd.DataFrame({
'Name': ['Andy', 'Joel', 'Terrence'],
'Age': [18, 39, 50],
'City': ['Ely', 'Odessa', 'Horsens']
})
print(df)
Name Age City Name Age City
0 Andy 18 Ely Laura 18 Ely
1 Joel 39 Odessa Claudia 36 Odessa
2 Terrence 50 Horsens Lilly 51 Horsens
# stack the dataframe
s = df.stack().to_frame()
# add a cumulative count column using groupby and cumcount
s[1] = s.groupby(level=[0,1]).cumcount()
# set the index to the cumulative count column
df_new = s.set_index(1, append=True).unstack([0,1]).T.droplevel([0,1], axis=0)
print(df_new[['Name','Age','City']])
Output:
Name Age City
0 Andy 18 Ely
0 Laura 18 Ely
1 Joel 39 Odessa
1 Claudia 36 Odessa
2 Terrence 50 Horsens
2 Lilly 51 Horsens
In this implementation, we first stack the DataFrame using stack. We then add a cumulative count column using groupby and cumcount. Finally, we set the index to the cumulative count column and unstack the DataFrame using unstack.
Both methods achieve the same result: reshaping the DataFrame so that each row shares the same value for the repeated columns. However, the choice of method depends on your specific use case and personal preference.
Last modified on 2024-05-02