R Programming: Efficiently Calculating Keyword Group Presence Using Matrix Multiplication and Data Frames
Here’s how you could implement this using R:
# Given dataframes
abstracts <- structure(
data.frame(keyword1 = c(0, 1, 1), keyword2 = c(1, 0, 0), keyword3 = c(1, 0, 0), keyword4 = c(0, 0, 0))
)
groups <- structure(
data.frame(group1 = c(1, 1, 1), group2 = c(1, 0, 1), group3 = c(0, 0, 1), group4 = c(1, 1, 1), group5 = c(0, 1, 0))
)
# Convert dataframes to matrices
abstracts_mat <- matrix(nrow = nrow(abstracts), ncol = 4)
colnames(abstracts_mat) <- paste0("keyword", names(abstracts))
abstracts_mat
groups_mat <- matrix(nrow = ncol(groups), ncol = 5)
rownames(groups_mat) <- paste0("keyword", names(groups))
colnames(groups_mat) <- paste0("group", 1:ncol(groups))
groups_mat
# Create the result matrix
result_matrix <- t(t(abstracts_mat %*% groups_mat)) - rowSums(groups_mat)
# Check if all keywords from a group are present in an abstract
result_matrix
You could also use data frames directly without converting to matrices:
# Given dataframes
abstracts <- structure(
data.frame(keyword1 = c(0, 1, 1), keyword2 = c(1, 0, 0), keyword3 = c(1, 0, 0), keyword4 = c(0, 0, 0))
)
groups <- structure(
data.frame(group1 = c(1, 1, 1), group2 = c(1, 0, 1), group3 = c(0, 0, 1), group4 = c(1, 1, 1), group5 = c(0, 1, 0))
)
# Create the result matrix
result_matrix <- t(t(as.matrix(abstracts) %*% as.matrix(groups))) - rowSums(as.matrix(groups))
# Check if all keywords from a group are present in an abstract
result_matrix
Last modified on 2024-01-03